Large-Scale Investigation of Weed Seed Identification by Machine Vision

نویسندگان

  • Pablo M. Granitto
  • Pablo F. Verdes
  • H. Alejandro Ceccatto
چکیده

We explore the feasibility of implementing fast and reliable computer-based systems for the automatic identification of weed seeds from color and black and white images. Seeds size, shape, color and texture characteristics are obtained by standard image-processing techniques, and their discriminating power as classification features is assessed. These investigations are performed on a database much larger than those used in previous studies, containing 10310 images of 236 different weed species. We consider the implementation of a simple Bayesian approach (näıve Bayes classifier) and (single and bagged) artificial neural network systems for seed identification. Our results indicate that the näıve Bayes classifier based on an adequately selected set of classification features has an excellent performance, competitive with that of the comparatively more sophisticated neural network approach. In addition, we discuss the possibility of using only morphological and textural characteristics as classification features, which would reduce the operational complexity and hardware cost of a commercial system since they can be obtained from black and white images. We find that, under particular operational conditions, this would result in a relatively small loss in performance when compared to the implementation based on color images.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weed seeds identification by machine vision

The implementation of new methods for reliable and fast identification and classification of seeds is of major technical and economical importance in the agricultural industry. As in ocular inspection, the automatic classification of seeds should be based on knowledge of seed size, shape, color and texture. In this work, we assess the discriminating power of these characteristics for the unique...

متن کامل

A computer vision approach for weeds identification through Support Vector Machines

Keywords: Support Vector Machines Machine vision Weed identification Image segmentation Decision making This paper outlines an automatic computer vision system for the identification of avena sterilis which is a special weed seed growing in cereal crops. The final goal is to reduce the quantity of herbicide to be sprayed as an important and necessary step for precision agriculture. So, only are...

متن کامل

Machine Vision-based Weed Spot Spraying: a Review and Where next for Sugarcane?

AUTOMATED precision weed spot spraying in the sugarcane industry has potential to increase production while reducing herbicide usage. However, commercially-available technologies based on sensing of weed optical properties are typically restricted to detecting weeds on a soil background (i.e. detection of green on brown) and are not suited to detecting weeds among a growing crop. Machine vision...

متن کامل

A Real-Time Specific Weed Recognition System Using Statistical Methods

The identification and classification of weeds are of major technical and economical importance in the agricultural industry. To automate these activities, like in shape, color and texture, weed control system is feasible. The goal of this paper is to build a real-time, machine vision weed control system that can detect weed locations. In order to accomplish this objective, a real-time robotic ...

متن کامل

Development and Evaluation of a Real Time Site-Specific Inter-Row Weed Management System

ABSTRACT- A real-time, site-specific, machine-vision based, inter-row patch herbicide application system was developed and evaluated. The image resolution was 640 × 480 pixels covering a total area of 350 mm x 240 mm of a field composed of four quadrants of 350 mm x 60 mm each. The image frames were processed by LabView® and MatLab®. The developed algorithm, based on weed coverage ratio and seg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004